BACHELOR OF TECHNOLOGY (MECHANICAL ENGINEERING) CREDIT BASED KURUKSHETRA UNIVERSITY KURUKSHETRA

SCHEME OF STUDIES/EXAMINATION

SEMESTER V (w.e.f. session 2021-2022)

S. No.	Course No.	Course Name	L:T:P	Hours/ Week	Credits	Examination Schedule (Marks)				Duration of Exam (Hrs.)
						Major Test	Minor Test	Practical	Total	
1	HTM-901A	Universal Human Values II : Understanding Harmony	3:0:0	3	3	75	25	0	100	3
2	MEC-301A	Heat Transfer	3:1:0	4	4	75	25	0	100	3
3	MEC-303A	Production Technology	3:0:0	3	3	75	25	0	100	3
4	MEC-305A	Mechanical Vibrations and Tribology	3:0:0	3	3	75	25	0	100	3
5	MEC-307LA	Heat Transfer lab	0:0:2	2	1	0	40	60	100	3
6	MEC-309LA	Production Technology Lab	0:0:2	2	1	0	40	60	100	3
7	MEC-311LA	Mechanical Vibrations and Tribology Lab	0:0:2	2	1	0	40	60	100	3
8	MEC-313LA	Project-I	0:0:2	2	1	-	0	100	100	3
9	*MEC-315A	Industrial Training-II	2:0:0	2	-	-	100	-	100	-
10	**MC-903A	Essence of Indian Traditional Knowledge	3:0:0	3	-	100	-	-	100	3
			Total	26	17	300	220	280	800	

*MEC-315A is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

**MC-903A is a mandatory credit-less course in which the students will be required to get passing marks in the major test.

HTM-901A		Universal Hu	man Values	II: Understand	ding Harmony	7						
Lecture	Tutorial	torial Practical Credit Major Test Minor Test Total Time 0 2.0 75 25 100 2 Hours										
3	0	0 3.0 75 25 100 3 Hours										
Purpose	Purpose a	and motivat	ion for the	course, red	capitulation	from Unive	ersal Human					
	Values-I											
Course Out	comes (CO)											
CO 1	Developm	nent of a ho	listic persp	ective base	ed on self-e	xploration	about					
	themselve	s (human b	eing),fami	ly, society a	and nature/	existence.						
CO 2	Understa	nding (or de	eveloping c	larity) of the	e harmony i	in the huma	an					
	being, farr	nily, society	and nature	e/existence								
CO 3	Strengthe	Strengthening of self-reflection.										
CO 4	Developm	nent of com	mitment ar	nd courage	to act.							

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for ValueEducation

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at variouslevels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrarinessin choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

- 7. Understanding human being as a co-existence of the sentient 'l' and the material 'Body'
- 8. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 10. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods

available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-HumanRelationship

- 13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 14. Understanding the meaning of Trust; Difference between intention and competence
- 15. Understanding the meaning of Respect, Difference between respect and differentiation; the othersalient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- fromfamily to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 18. Understanding the harmony in the Nature
- 19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and self-regulation in nature
- 20. Understanding Existence as Co-existence of mutually interacting units in allpervasive space
- 21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" canbe used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on ProfessionalEthics

- 22. Natural acceptance of human values
- 23. Definitiveness of Ethical Human Conduct
- 24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- 25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the

scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.

- 26. Case studies of typical holistic technologies, management models and production systems
- 27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations
- 28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. todiscuss the conduct as an engineer or scientist etc.

READINGS:

Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J CKumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for lecture/practice sessions.

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at handand motivating students to reflect, explore and verify them.

Practice hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions, the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration. Scenarios may be used to initiate discussion. The student is encouraged to

take up" ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Practice experiments are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based onbasic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemedessential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

Example: Assessment by faculty mentor: 5 marks Self-assessment: 5 marks Assessment by peers: 5 marks Socially relevant project/Group Activities/Assignments: 10 marks Semester End Examination: 75 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

		B. Tech (5th	Semester) N	lechanical E	ngineering								
MEC- 301A		HEAT TRANSFER											
Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time						
		Test Test (Hrs)											
3	1	1 0 4 75 25 100 3											
Purpose	To build a	a solid found	lation in hea	at transfer a	nd rigorous	treatment of	governing						
	equations	and solution p	procedures.										
			Course O	utcomes									
CO1	After comple	eting the cours	se, students v	will be able to	formulate and	d analyze a h	eat transfer						
	problem inv	olving any of	the three mo	des of heat tr	ansfer.								
CO2	Students w	ill be able to	o obtain exa	ct solutions	for the temp	erature vari	ation using						
	analytical n	nethods whe	re possible	or employ	approximate	methods o	r empirical						
	correlations	to evaluate the	ne rate of hea	at transfer.									
CO3	Students wi	ll be able to c	lassify and e	valuate the d	esign parame	eters of devid	ces such as						
	heat exchar	ngers and als	o estimate th	ne insulation	needed to re	duce heat lo	sses where						
	necessary.												

UNIT-I

Introduction: Definition of heat, modes of heat transfer, basic laws of heat transfer, application of heat transfer, simple problems.

Conduction: Derivation of heat balance equation - steady one dimensional solution for conduction heat transfer in Cartesian, cylindrical and spherical geometry, concept of conduction and film resistances, steady one dimensional heat conduction without internal heat generation, the plane slab, the cylindrical shell, the spherical shell, conduction through composite wall, critical insulation thickness, variable thermal conductivity, steady one dimensional heat conduction with uniform internal heat generation, the plane slab, the cylindrical and spherical systems, heat transfer through fins of uniform cross-section, governing equation, temperature distribution and heat dissipation rate, effectiveness and efficiency of fins.

Transient conduction: Lumped system approximation and Biot number, approximate solution to unsteady conduction heat transfer by the use of Heisler charts.

UNIT-II

Convection: Heat convection, basic equations, boundary layers, forced convection, external and internal flows, natural convective heat transfer, dimensionless parameters for forced and free convection heat transfer, boundary layer analogies, correlations for forced and free convection, approximate solutions to laminar boundary layer equations (momentum and energy) for both internal and external flow, estimating heat transfer rates in laminar and turbulent flow situations using appropriate correlations for free and forced convection. Boiling and Condensation heat transfer, pool boiling curve, Nusselt theory of laminar film condensation.

UNIT-III

Radiation: Interaction of radiation with materials, definitions of radiative properties, monochromatic and total emissive power, Planck's distribution law, Stefan Boltzman's law, Wien's displacement law, Kirchoff's law, intensity of radiation, Lambert's cosine law, heat transfer between black surfaces, radiation shape factor, heat transfer between non-black surfaces: infinite parallel planes, infinite long concentric cylinders, small gray bodies and small body in large enclosure, electrical network approach, radiation shields.

UNIT-IV

Heat exchangers: Types of heat exchangers; overall heat transfer coefficient, fouling factor, analysis and design of heat exchangers using logarithmic mean temperature difference, and NTU method, effectiveness of heat exchangers, multipass heat exchangers, applications of heat exchangers.

Text books:

- 1. Fundamentals of Heat and Mass transfer Frank P. Incropera, David P. Dewitt, T.L. Bergman and A.S. Lavine, Sixth Edition, Wiley Publications, 2007.
- 2. Heat Transfer: A Practical Approach Yunus A Cengel, McGraw Hill, 2002.
- 3. Heat and Mass Transfer P.K. Nag, Tata McGraw Hill.
- 4. Heat Transfer J.P. Holman, Eighth Edition, McGraw Hill, 1997.

Reference books:

- 5. Heat Transfer A. Bejan, John Wiley, 1993.
- 6. A Text book of Heat Transfer S.P Sukhatme, University press.
- 7. Principles of Heat Transfer Massoud Kaviany, John Wiley, 2002.
- 8. Heat and Mass Transfer D.S Kumar, S.K. Kataria & Sons.
- 9. Heat Transfer Y.V.C. Rao, University Press.

	B. Tech (5 th Semester) Mechanical Engineering												
MEC-303A		PRODUCTION TECHNOLOGY											
Lecture	Tutorial	Practical	Credits	Major	Minor	Total	Time						
	Test Test												
3	0	0	3	75	25	100	3						
Purpose:	To acquain	t the knowled	ge of differe	nt type of m	achines and	machine to	ols used in						
	machining	of metals, cut	ting tools us	ed in differei	nt operations	s, work holdi	ing devices						
	and CNC m	achines.											
			Course Out	comes									
CO 1	After comp	leting the cou	rse, students	s will be able	e to explain t	the working	of different						
	machines, r	machine tools	and analyze	the forces in	machining o	operations.							
CO 2	Students wi	ill be able to e	xplain differe	nt types of cu	utting tools a	nd cutting flu	iids used in						
	machining.					t ² 1 1 1	(
CO 3	Students w	ili be able to d	escribe metro	blogy and wo	orking of insp	ection tools	for different						
	applications	<u>.</u>											
CO 4	Students wi	Il be able to e	cplain various	s thread operations	ations, differe	ent workhold	ing devices						
	and differer	and different gear manufacturing processes.											
CO 5	Students v	vill be able	to distinguis	sh between	the advance	cements in	CNC and						
	conventiona	al machining r	nethods and	develop prog	graming for p	arts product	ion.						
				·I									

Theory of metal machining: Overview of machining technology: types of machining operation, cutting tools, cutting conditions, theory of chip formation in metal cutting: orthogonal cutting model, actual chip formation, forces relationships and the merchant equation: forces in metal cutting, the merchant equation, power and energy relationships in machining, cutting temperatures.

Machine tools and machining operations: Turning and related operations: cutting conditions, operations related to turning, engine lathe, other lathes and turning machines, boring machines, drilling and related operations: cutting conditions, operations related to drilling, drill presses, Milling: types of milling operations, cutting conditions, milling machines, high speed machining, grinding machines: types, wet and dry grinding, abrasives, grit, grade and structure of wheels, selection of grinding wheels.

UNIT-II

Technology and materials of cutting tools: Tool life, tool wear, taylor tool life equation, tool materials: high speed steels, cast cobalt alloys, cemented carbides, cermets and coated carbides, ceramics, synthetic diamonds and cubic boron nitrides, tool geometry: single point tool geometry, effect of tool material on tool geometry, multiple-cutting-edge tools, cutting fluids: types of cutting fluids, applications and selection of cutting fluids.

Metrology and inspection: Limits, fits, and tolerances, gauge design, interchangeability, linear, angular, and form measurements (straightness, squareness, flatness, roundness, and cylindricity) by mechanical and optical methods, inspection of screw threads, surface finish measurement by contact and non-contact methods, tolerance analysis in manufacturing and assembly.

UNIT-III

Threads: Standard forms of screw threads, methods of making threads, thread cutting on lathe, thread chasing, thread milling, thread rolling, thread grinding, thread tapping, automatic screw cutting machines, inspection and measurement of threads.

Workholding devices for machine tools: Introduction, conventional fixture design, tool design steps, clamping considerations, chip disposal, unloading and loading time, example of jig design, types of jigs, conventional fixtures, modular fixturing, setup and changeover: single-minute-exchange-of-die (SMED), clamps, other workholding devices: assembly jigs, magnetic workholders, electrostatic workholders, economic justification of jigs and fixtures.

UNIT-IV

Gear manufacturing and finishing: Introduction to different types of gears, terminology, methods of gears manufacturing, gear forming: selecting a form gear cutter for cutting spur gears, selecting gear cutter for cutting helical or spiral gear, broaching of gears, generating methods: gear shaper process, rack planning process, gear hobbing process. Gear finishing operations: Shaving, burnishing, grinding, lapping, honing, gears inspection.

Computer numerical control (CNC) machines: Classification of CNC machines, modes of operation of CNC, Working of Machine Structure, Automatic tool changer (ATC), Automatic pallet changer (APC), CNC axis and motion nomenclature, CNC toolings – tool pre-setting, qualified tool, tool holders and inserts, Axes Identification in CNC turning and Machining centers, CNC part programming: Programming format and Structure of part programme, ISO G and M codes for turning and milling-meaning and applications of important codes.

Text Books:

- 1. Fundamentals of modern manufacturing: materials processing and systems by Mikell P. Grover, John Wiley and Sons.
- 2. Materials and processes in manufacturing by J.T. Black and R.A. Kohser, John Wiley and Sons.
- 3. Production Technology by R. K. Jain, Khanna Publishers.
- 4. Machine Tools by R. Kesavan & B. Vijaya Ramnath, Laxmi Publications.
- 5. Machining and Machine Tools by A. B. Chattopadhyay, WILEY INDIA.

Reference Books:

- 1. Principles of Machine Tools by G.C. Sen & A. Bhattacharya, Tata McGraw Hill, New Delhi
- 2. Manufacturing Engg. & Tech by S. KalpakJian and S.R. Schmid, Pearsons.
- 3. Modern Machining Processes by P.C. Pandey & H.S. Shan, T.M.H. Company, New Delhi
- 4. Production Engineering: P.C. Sharma, S.Chand & Sons.
- 5. Introduction to Jig and Tool Design by Kempster M.H.A, Hodder & Stoughton, England

	B. Tech. (5th Semester) Mechanical Engineering
MEC-305A	MECHANICAL VIBRATIONS AND TRIBOLOGY

Lecture	Tutorial	Practical	Credit	Major	Minor	Total	Time			
				Test	Test	Time	(Hrs)			
3	0	0	3	75	25	100	3			
Purpose:	To understa	and the vibrat	ion systems	with differe	nt degrees	of freedom	in different			
	modes and	conditions and	d the basics of	of tribology.						
			Course Out	comes						
CO1	Students wil	ll be capable o	of describing t	the fundame	ntals of vibra	ation for a sir	ngle degree			
	of freedom (D.O.F.) syste	m under free	and damped	d vibrations.					
CO2	Students wi	Il be able to a	analyze diffe	rent types o	of forced vib	ration syster	m in single			
	degree of fre	eedom (D.O.F	.) and dampe	ed, undampe	d, free and f	orced syster	ms with two			
	D.O.F.									
CO3	Students wi	ill be able to	explain the	principal m	nodes of vib	orations usir	ng different			
	methods for	methods for various combinations of spring-mass, rotor-shaft systems; transverse,								
	longitudinal and torsional vibration for beams, bars and shafts respectively.									
CO4	Students wil	ll be able to de	escribe the fu	Indamentals	of tribology,	lubrication,	friction and			
	wear.									

UNIT-I

Fundamentals: Introduction, elements of a vibratory system, periodic and S.H.M., degrees of freedom (DOF), types of vibrations, work done by a harmonic force, beats, problems.

Free vibration systems with single degree of freedom

Undamped systems: Introduction, differential equations, torsional vibrations, spring and shaft combinations: series & parallel, linear and torsional systems, compound pendulum, bifilar and trifilar suspensions, problems.

Damped systems: Introduction, types of damping, differential equations of damped free vibrations, initial conditions, logarithmic decrement, vibrational energy, problems.

UNIT-II

Forced vibration systems with single degree of freedom: Introduction, excitation and sources, equations of motion, rotating and reciprocating unbalanced system, support motion, vibration isolation, force and motion transmissibility, forced vibration system with different types of damping, vibration measuring instruments, resonance, bandwidth, quality factor and half power points, critical speed of shaft with and without damping with single and multiple discs, problems.

Two degree of freedom system: Introduction, torsional vibrations, principal modes of vibrations for two D.O.F., damped and undamped forced and free vibrations, semi-definite systems, co-ordinate coupling, spring and mass type vibration absorber, problems.

UNIT-III

Multi-degree of freedom systems: Introduction, principal modes of vibrations for three or more DOF, influence coefficients, orthogonality principle, matrix method, matrix iteration method, Dunkerley's equation, Holzer's Method, Rayleigh Method, Rayleigh-Ritz method, Stodola method, problems.

Continuous systems: Introduction, lateral vibrations of strings, longitudinal vibrations of bars, transverse vibration of beams, torsional vibration of uniform shafts, problems.

UNIT-IV

Tribology: Introduction, tribology in design, tribology in industry, economic aspects.

Lubrication: Introduction, basic modes of lubrication, lubricants, properties of lubricants: physical and chemical, types of additives, extreme pressure lubricants, recycling of used oils and oil conservation, disposal of scrap oil, oil emulsion.

Friction and wear: Introduction, laws of friction, kinds of friction, causes of friction, friction measurement, theories of friction, effect of surface preparation. Introduction to wear, types of wear, various factors affecting wear, measurement of wear, wear between solids and liquids, theories of wear. **Text Books:**

- 1. Mechanical Vibrations by G. K. Grover, Nem Chand and Bros., Roorkee
- 2. Elements of Mechanical Vibrations by Meirovitch, McGraw Hill
- 3. Introductory course on theory and practice of Mechanical Vibration by J.S. Rao and K.Gupta, New Age International.
- 4. Friction and wear of Materials by E. Robinowicz, Johan Wiley
- 5. Tribology an Introduction by Sushil Kumar Srivastava
- 6. Introduction to Tribology and Bearings by B. C. Majumdar, S. Chand and Company Ltd. New Delhi.

Reference Books:

- 1. Mechanical Vibrations by S. S. Rao, Pearson Education Inc. Dorling Kindersley (India) Pvt. Ltd. New Delhi.
- 2. Mechanical Vibrations by V.P. Singh, Dhanpat Rai & Co. Pvt. Ltd., Delhi
- 3. Engineering Tribology by Prashant Sahoo, PHI publications.
- 4. Principles of Tribology by J. Hailing, McMillan Press Ltd.

	B. Tech. (5 th Semester) Mechanical Engineering											
MEC-			HE	AT TRANS	FER LA	В						
307LA												
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time				
				Test	Test			(Hrs)				
0	0	2	1	0	40	60	100	3				
Purpose	To impar	t practical k	nowledge o	of different	modes	of heat tran	nsfer by co	onducting				
	experime	nts.										
	Course Outcomes											
CO1	Students w	Students will be able to design and conduct experiments, acquire data, analyze and										
	interpret da	ata.										
CO2	Students w	vill be able to	measure th	e thermal c	onductiv	ity of metal r	od, insulat	ing				
	material ar	nd liquids.										
CO3	Students w	vill be able to	explain the	concept of	composi	te wall and o	determine i	ts				
	thermal res	sistance.										
CO4	Students w	Students will be able to evaluate heat transfer coefficients in free and forced										
	convection	l.										
CO5	Students w	vill be able to	measure th	ie performa	nce of a	heat exchan	iger.					
CO6	Students w	vill be able to	determine	the Stefan E	Boltzman	n constant a	and emissiv	/ity.				

List of Experiments:

- 1. To determine the thermal conductivity of a metal rod.
- 2. To determine the thermal conductivity of an insulating slab.
- 3. To determine the thermal conductivity of a liquid using Guard plate method.
- 4. To determine the thermal conductivity of an insulating powder.
- 5. To determine the thermal resistance of a composite wall.
- 6. To plot the temperature distribution of a pin fin in free-convection.
- 7. To plot the temperature distribution of a pin fin in forced-convection.
- 8. To study the forced convection heat transfer from a cylindrical surface.
- 9. To determine the effectiveness of a concentric tube heat exchanger in a parallel flow arrangement.
- 10. To determine the effectiveness of a concentric tube heat exchanger in a counter flow arrangement.
- 11. To determine the Stefan-Boltzman constant.
- 12. To determine the emissivity of a given plate.
- 13. To determine the critical heat flux of a given wire.
- 14. To study the performance of an evacuated tube based solar water heater.

Note: At least eight experiments are required to be performed by students from the above list and two may be performed from the experiments developed by the institute.

	B. Tech. (5 th Semester) Mechanical Engineering													
MEC-309LA	PRODUCTION TECHNOLOGY LAB													
Lecture	Tutorial	Tutorial Practical Credits Major Minor Practical Total Time												
		Test Test (Hrs.)												
0	0	0 2 1 0 40 60 100 3												
Purpose	To impart practical knowledge of various measuring instruments, machining and welding													
	operations	by performing	g experime	ents.										
			Cour	se Outcom	ies									
CO 1	Students wi	ll be able to r	neasure th	e linear and	d angular dime	ensions using	various e	quipment.						
CO 2	Students wi	Il be able to e	execute va	rious machi	ning operatio	ns for the prep	paration o	f jobs on						
	different machine tools.													
CO 3	CO 3 Students will be able to create various jobs using TIG/MIG welding.													
CO 4	Students wi	Il be able to	develop job	os on CNC	lathe and CN	C milling.								

LIST OF EXPERIMENTS:

- 1. Study of linear, angular measuring devices and to measure the linear and angular dimensions using various equipment's.
- Manufacture and assembly of a unit consisting of 2 to 3 components to have the concept of tolerances and fits (shaft and bush assembly or shaft, key and bush assembly or any suitable assembly).
- 3. To prepare a job on a lathe having various operations viz. drilling, boring, taper turning, thread cutting, knurling, etc.
- 4. Demonstration of formation of cutting parameters of single point cutting tool using bench grinder / tool & cutter grinder.
- 5. To make a spur gear of given part drawing involving operations namely drilling, boring, reaming, honing, key slotting, gear teeth machining, lapping and gear teeth finishing.
- 6. Introduction to various grinding wheels and demonstration on the cylindrical and surface grinder.
- 7. To demonstrate surface milling /slot milling.
- 8. To cut gear teeth on milling machine using dividing head.
- 9. To cut V Groove/ dovetail / Rectangular groove using a shaper.
- 10. To prepare a useful product containing different types of welded joints using simple arc/TIG/MIG welding set.
- 11. To cut external threads on a lathe and practice thread measurements.
- 12. To study CNC lathe trainer and its components (hardware and software) especially controllers (Fanuc and Siemens) and make a CNC programme using APT language of given part drawing for machining cylindrical job involving operations namely turning, step turning, taper turning, threading, radius contour cutting, chamfering etc.
- 13. To study CNC milling trainer and its components (hardware and software) especially controllers (Fanuc and Siemens) and make a CNC programme using APT language of given drawing for

milling job operations namely end cutting, side cutting, contour cutting, face cutting, etc. and run the programme in simulation and actual mode in Cut Viewer or other software and run the program in actual mode using CNC controllers.

.**Note:** At least eight experiments are required to be performed by students from the above list and two may be performed from the experiments developed by the institute.

MEC-311LA		MECHA	NICAL VI	BRATION	S AND TR	IBOLOGY I	AB				
Lecture	Tutorial	Practical	Credits	Major	Minor	Practical	Total	Time			
				Test	Test		Time	(Hrs.)			
0	0	2	1	0	40	60	100	3			
Purpose:	To provid	e practical kr	iowledge o	f free and f	orced vibration	ation system	ı fundame	ntals and			
	the mech	anisms of frid	ction, wear	and lubric	ation.						
			Course	Outcomes	5						
CO1	Students	will be able	to evaluate	e free and	forced vib	prations of v	arious ele	ments in			
	Universal	Vibration Ap	paratus.								
CO2	Students	will be able	to measure	e the surfa	ace roughr	ness of diffe	rent mate	rials and			
	analyse t	he machiner	y faults, ca	uses and s	sources us	sing Machine	ery Fault S	Simulator			
	(MFS).										
CO3	Students	will be able	to analyse	the sliding	y wear and	l abrasive b	ehavior of	different			
	materials	materials using wear and friction monitoring apparatus and dry abrasion tester									
	respective	respectively.									
CO4	Students	will be able t	o evaluate	extreme p	pressure p	roperties of	different l	ubricants			
	using fou	r ball tester.									

LIST OF EXPERIMENTS:

- 1. To study undamped free vibrations and determine the natural frequency of:
 - 1.1 Spring mass system
 - 1.2 Simple Pendulum
 - 1.3 Torsional spring type double pendulum and compare them with theoretical values.
- 2. To study the torsional vibration of a single rotor shaft system and determine the natural frequency.
- 3. To study the free vibration of system for different damper settings. Draw decay curve and determine the log decrement and damping factor. Find also the natural frequency.
- 4. To verify the Dunkerley's rule.
- 5. To determine the radius of gyration for:
 - 5.1 Bifilar suspension.
 - 5.2 Compound pendulum.
 - 5.3 Trifilar suspension.
- 6. To study the forced vibration system with damping, Load magnification factor vs. Frequency and phase angle vs frequency curves. Also determine the damping factor.
- 7. To find out and locate machinery faults viz. vibrations and unbalancing using Machinery Fault Simulator (MFS) in:
 - 7.1 Direct Driven reciprocating pump;
 - 7.2 Direct Driven centrifugal pump;
 - 7.3 Defective straight tooth gearbox pinions.
- 8. To determine the wear rate, friction force and coefficient of friction of a metallic pin/ball by using wear and friction monitor apparatus.
- 9. To determine abrasion index of a material with the help of dry abrasion test rig.
- 10. To evaluate the wear and extreme pressure properties of a lubricating oil by using four ball tester.
- 11. To determine the roughness of a specimen using surface roughness tester.

Note: At least eight experiments are required to be performed by students from the above list and two may be performed from the experiments developed by the institute.

	B. Tech. (5 th Semester) Mechanical Engineering											
MEC-313 LA		PROJECT-I										
Lecture	Tutori	Itori Practical Credits Major Minor Practical Total Time										
	al	I Test Test Time (Hrs.)										
0	0	0 2 1 0 100 100 3										
Purpose:	To impl projects	lement the of for solving re	engineering eal world p	g principle: roblems.	s and the	ories into in	novative	practical				
			Course	Outcome	S							
CO1	Student	Students will be able to apply the theoretical knowledge into practical/software										
	projects	projects.										
CO2	Student	s will be able	to design	new produ	cts using l	atest technol	logies.					

The project work could be done for the problem statement of an industry or practical project in the institute. The students may also opt for the analysis based software projects with proper validation. Participation in any technical event/ competition to fabricate and demonstrate an innovative machine or product could be encouraged under this course.

Note: The maximum number of students in a group should not exceed four.

		B. Tech. (5 th Semester) Mechanical Engineering											
MEC-315A		INDUSTRIAL TRAINING-II											
Lecture	Tutorial Practical Credits Major Minor Practical Total												
				Test	Test			(Hrs.)					
2	0 0 100 100												
Purpose	To provid	To provide an industrial exposure to the students and enhance their skills and creative											
-	capability	for conversi	on of their i	innovative	ideas into ph	ysical reality.							
			Cours	e Outcom	es								
CO 1	Students	will be able t	o self-impr	ove throug	h continuous	professional	developn	nent and					
	life-long le	life-long learning.											
CO 2	Students	Students will be able to develop social, cultural, global and environmental responsibility											
	as an eng	as an engineer.											
CO 3	Students	will be able t	o weigh all	the latest	changes in te	echnological v	vorld.						

Note: MEC-315 is a mandatory non-credit course in which the students will be evaluated for the industrial training undergone after 4th semester and students will be required to get passing marks to qualify.

The candidate has to submit a training report of his/her work/project/assignment completed in the industry during the training period. The evaluation will be made on the basis of submitted training report and viva-voce/presentation.

		B. Tech. (5 th Semester) Mechanical Engineering											
MC-903A		ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE											
Lecture	Tutorial	torial Practical Credits Major Minor Practical Total Time Test Test (Hrs.)											
3	0	0 0 100 100 3											
Purpose	To impart	basic princi	ples of thou	ight proces	s, reasoning	and inferenc	ing.						
		Course Outcomes											
CO 1	Students knowledg	Students will be able to understand, connect up and explain basics of Indian traditional knowledge in modern scientific perspective.											

Course Contents

- Basic structure of Indian Knowledge System: अष्टादशविद्या -४वेद,४उपवेद (आयुर्वेद, धनुर्वेद, गन्धर्ववेद, स्थापत्य आदि) ६वेदांग (शिक्षा, कल्प, निरुक्त, व्याकरण, ज्योतिष, छंद) ४ उपाड्ग (धर्मशास्त, मीमांसा, पुराण, तर्कशास्त)
- Modern Science and Indian Knowledge System
- Yoga and Holistic Health care
- Case studies

References

- V. Sivaramakrishnan (Ed.), Cultural Heritage of India-course material, Bharatiya Vidya Bhavan, Mumbai. 5th Edition, 2014
- Swami Jitatmanand, Modern Physics and Vedant, Bharatiya Vidya Bhavan
- Swami Jitatmanand, Holistic Science and Vedant, Bharatiya Vidya Bhavan
- Fritzof Capra, Tao of Physics
- Fritzof Capra, The Wave of life
- VN Jha (Eng. Trans.), Tarkasangraha of Annam Bhatta, International Chinmay Foundation, Velliarnad, Arnakulam
- Yoga Sutra of Patanjali, Ramakrishna Mission, Kolkata
- GN Jha (Eng. Trans.), Ed. RN Jha, Yoga-darshanam with Vyasa Bhashya, Vidyanidhi Prakashan, Delhi 2016
- RN Jha, Science of Consciousness Psychotherapyand Yoga Practices, Vidyanidhi Prakashan, Delhi 2016
- P B Sharma (English translation), Shodashang Hridayan

Pedagogy: Problem based learning, group discussions, collaborative mini projects.